14
GENERAL PRINCIPLES OF KINETICS

The first detailed approach to the kinetic description of many particle systems
appeared in the famous works of Boltzmann (1872, 1895, 1898). The main idea
of the derivation of a kinetic equation is to describe a complex system dynamics
using a reduced number of variables. For example, a complete description of a
dynamical system can be done with a Liouville equation:
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where I € RN, 9 € RN, F = F(I1,9,t) is the density distribution function in
phase space, and (I,49) satisfy the Hamiltonian equations. There are two typical
reductions of variables:

(i) averaging over fast variables, phase 19, and the corresponding transition
F=F(1,9,t) — F(1,t) (14.2)
(ii) transition from N-degrees of freedom to one degree of freedom
F(L,it) — F(I,t), I eR. (14.3)

All approaches and methods exploit a randomness of the dynamics in explicit
or implicit form and due to the fact all kinetic equations acquire a remarkable
feature, irreversibility, and they satisfy the so-called H-theorem that also has
been discovered by Boltzmann (Note 14.1).

Dynamical chaos gives rise to a new vision of the basic principles of kinetics.
The main feature of a new wave in kinetic theories is that the random element of
the dynamics can be found directly from the Hamiltonian equation of motion, in
contrast to introducing randomness as an assumption. New models of the kinetic
theory are sometimes very different from the previously known types of kinetic
equations, and this will be the subject of the following chapters (Note 14.2).

14.1 Time scales

All approximate methods of the derivation of kinetics require a differentiation of
time-scales. Here are presented the most typical ones.

The collision time 7., characterizes the duration of a ‘collision’ of a particle
with external object or field. Typically this time shows how long a perturbation
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216 GENERAL PRINCIPLES OF KINETICS

acts on the particle. As a result of this action, there is a change of variables
AI,AY. The value At is the time interval between two adjacent collisions.
A ‘good’ situation is when

Teoll K Atcoll’ (144)

which means that particle dynamics can be considered as unperturbed, that
is, free, between any two adjacent collisions. The introduction of the notion of
‘collision time’ is meaningful only in the case (14.4). It also permits to introduce
a map

(In+l, 19n+1) = Tn(In,ﬁn) (14.5)
or in a more specific form

In+l a In =+ fl (Iruﬂn)v

(14.6)
Pnt1 = VUn + wnAt, + f2(In‘ Tn),

where f;, fo are some functions related to the perturbation, w, is frequency, and
At,, is a time interval between n-th and (n + 1)-th collisions. For example, in
the standard map

~

fo=fi=Ksin¥,, At,=const=T, wp=— (14.7)

T
and the condition (14.4) is automatically valid since 7¢on = 0.

As aresult of perturbation, one can expect the occurrence of chaotic dynamics
that has at least two time-scales. The first one is a time 7. of the decay of phase
correlations. In the good mixing or Anosov-type systems it is of the order

At At
Ten~ — ~ — 14.8
em S~ (14.8)
where h is KS-entropy and o is a dimensionless Lyapunov exponent. For some
cases of the standard map and K > 1

2T
Te = ——,
¢ InK
that is, less than a time At = T between collisions. The second time, due to

chaos, describes a slow evolution of the action variable I,,. Typically, this time
74 satisfies the condition

(14.9)

T4 e (14.10)

and is known as diffusion time.
How these time scales work will be demonstrated using some simple examples,
but our main emphasis is that for typical Hamitonian dynamics the described
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scheme is very insufficient due to the presence of singular zones, dynamical traps,
etc. Just these deviations from regular (or normal) kinetics make it necessary to
extend the class of possible equations to the so-called fractal kinetic equations
(Note 14.3).

14.2 Fokker—Planck—Kolmogorov (FPK) equation

The FPK equation was obtained by Fokker (1914), Smolukhowski (1915),
Einstein (1905), and Planck (1917). Landau (1937) and Kolmogorov (1938)
derived the kinetic equation using a special scheme and conditions that are
important for understanding some basic principles of kinetics (Note 14.4). Let
W (z,t;2’,t") be a probability density of having a particle at the position z at
time ¢ if the particle was at the position z’ at time ¢’ < ¢t. A chain equation of
the Markov-type process can be written for Wz, t; 2, t'):

W (zs,t3; 21,t1) = /dxzw(xa,ts;xz,tz)W(mz,tz;xl,tl), (14.11)

which has a simple meaning that the transition (z;,¢,) — (x3,¢3) can go through
all possible states (z2,%5).
A typical assumption for W is its time uniformity, i.e.:

W(z,t;z',t') = W(z,z';t - t'). (14.12)

Consider the evolution of W(xz,2';t — t') during an infinitesimal time At =
t' — t and use the expansion

W (x, zo; t + At) = W(z, zo;t) + W (z,z9;t)

At+---. |
5% + (14.13)
Equation (14.13) is valid providing the limit:
e ! o W (x,20;t)
Alir—l}o A {W(z,zo;t + At) — W(z,z0;t)} = —a (14.14)

has a sense. The existence of the limit (14.14) for At — 0 imposes specific
physical constraints that will be discussed in Section 14.4.
Let us now introduce a new notation:

P(z,t) = W(x,zo;t), (14.15)

where the initial coordinate z is omitted. With the help of Egs. (14.11)-(14.13),
we can transform (14.14) into:

B lim A {/dyW(a:,y;At)P(y,t) - P(:c,t)}. (14.16)
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The first important feature in the derivation of the kinetic equation is the intro-
duction of two distribution functions P(z,t) and W (z,y; At) instead of the one
W (z,t;2',t"). The function P(z,t) will be used for £ — oo or, more accurately,
for ¢ which satisfies the condition

t > Teoll, (14.17)

where 7o) is not defined yet. In this situation W (z, zo;t) does not depend on the
initial condition zo and this explains the notation (14.15). Contrary to P(z,t),
W (z,y; At) defines the transition during very short time At — 0. For At =0 it
should be no transition at all if the velocity is finite, i.e.:

AHIEOW(:C, y; At) = 6(z — y). (14.18)

Following this restriction we can use the expansion over d-function and its
derivatives (Zaslavsky 1994a; Zaslavsky 1994b), i.e.:

W(z,y; At) = 0(z —y) + A(y; A1) (z — y) + 1 B(y; At)d"(z —y),  (14.19)

where A(y; At) and B(y; At) are some functions. The prime denotes a derivative
with respect to the argument, and we consider the expansion up to the second
order only.

Distribution W (z,y; At) is called transfer probability and it satisfies two
normalization conditions:

/W(x,y; At)dz =1 (14.20)
and
/W(m,y; At)dy = 1. (14.21)

The coefficients A(z; At) and B(z; At) have a fairly simple meaning. They can
be expressed as moments of W (z,y; At):

Aly; At) = / da(y — 2)W (z,y; At) = ((Ag)),
(14.22)

By; Af) = / da(y — 2)*W (e, y; At) = (((Ag)?).

In a similar way, coefficients for the higher orders of the expansion of W (z,y; At)
can be expressed through the higher moments of W.

Integration of (14.19) over « does not provide any additional information due
to (14.20), but integrating over y and using (14.21) gives:

Aly; At) = %%g;ﬂ (14.23)
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or applying the notations (14.22),

(@) = 5 5 (0. (14.24)

Expressions (14.23) and (14.24) were first obtained in Landau (1937) as a result
of the microscopic reversibility, or detailed balance principle. In Landau (1937),
dynamical Hamiltonian equations were used for (14.24), while here we use the
expansion (14.19) and ‘reversible’ normalization (14.21). The final step is an
assumption that we name the following existing limits Kolmogorov conditions:

lim l((Aa:)) = A(z),

At—0 At
Jim, - (Az)) = B), (1425)
Jim (@™ =0, (m>2).

It is due to the Kolmogorov conditions that irreversibility appears at the final
equation. Now it is just formal steps. Substituting (14.19), (14.22), and (14.24)
into (14.16) gives

2
Ll Ly T ; ; 3

= t 14.26
ot o (BP(z,1)), (14.26)
which is the equation derived by Kolmogorov and which is called the Fokker-
Planck-Kolmogorov (FPK) equation. It is a diffusion-type equation and it is
irreversible. After using the relations (14.23) and (14.24) we get the diffusion
equation (14.26) in the final form:

OP(z,t) 10 _ 0P(z,t)
ot 20z oz (420
with a diffusion coefficient
U (((A)))
D=B= Alir_r.l0 o (14.28)

Equation (14.27) has a divergent form that corresponds to the conservation
law of the number of particles:

oP 0J

e (14.29)

with the particle flux

L e (14.30)
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In the following section we will see how a similar scheme can be applied to derive
the fractional kinetic equation.

An additional condition follows from (14.24) and notations (14.25) and
(14.28)

_10B(z) 10D

A=) =570 ~ 262"

(14.31)

which explains a physical meaning of A(z) as a convective part of the particle
flux. This part of the flux and A(z) are zero if D = const (Note 14.5).

14.3 Detailed balance principle

The divergent form (14.27) of the FPK equation is a particular case of (14.26).
This form appears due to some symmetry of the moments that follows from
(14.23) or (14.24). In its turn, (14.23) is a result of the expansion (14.19) with
symmetry conditions (14.20) and (14.21) for the transitional probability. Such
condition of symmetry is known as the detailed balance principle, and its connec-
tion to the divergent form of the kinetic equation was shown by Landau (1937).
Landau also has shown in the same paper a simple way to derive (14.24) based
on the uniformity of the phase distribution.

Let the Hamiltonian of a system be H = H(I,?¥;t) and let us calculate
a change of action I during a small time interval At up to the terms of the order
(At)2. Tt follows:

AT = I(t+ At) — I(t) = IAt + %f(At)z

oH 1(00H 0°HOH 0°H 6H

. oa,, ljood o102 o°4d0oHd 2
S {319 ot T 992 o1 ~ 9199 60}( Yo QA
where the Hamiltonian equations
: OH . OH
I = _6_19’ ’(9 = Wy (14'33)
have been used and the operator has been applied
d 9 .0 .0
E—‘a—t‘l'lm +19%. (14.34)
Finally, (14.32) transfers into
_ 0H 10 [0H By 1€ peus 2
Al = — 59 At 559 [—a— 119] (At)* + 281(1) (At)“. (14.35)
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We are interested in the coarse-grained, that is, phase averaged, observables.
The phase averaging means

27

~on
that is, any expression that can be presented as v-derivative of some function
vanishes after applying (14.36). Thus, up to (At)?,

201 (14.37)

It follows from (14.15) that

10 5
(AD) = 52 (AT (14.38)
be known as a consequence of the detailed balance principle, that is, that the
probabilities of some transition from a state A to B are the same as for the
transition from B to A. The expression (14.38) is similar to the expression (14.24)
derived directly from the symmetry of definitions (14.22).

Here we have also to comment that in the proposed qualitative derivation of
(14.38) phase averaging that leads to (14.38) is not supported by any microscopic
consideration and the way to do it is fairly lengthy. It is also important to mention
that ((AI)) and ({(AI)?)) are of the same order of magnitude.

14.4 Solutions and normal transport

There are numerous sources related to the solutions of the FPK equation (14.27)
for different initial and boundary conditions (see for example Weiss (1994);
Risken (1989)). Our goal here is just to mention a few simple properties of
the FPK equation which are important for the future.

Let us simplify the case considering D = const, z € (—o00,00), and the initial
condition for a particle to be at x = 0. Then

2
P(z,t) = (27Dt)" Y2 exp (‘5%7) , (14.39)

known as a Gaussian distribution. Its odd moments are zero, the second
moment is

(x?) = Dt (14.40)
and the higher moments are

(™ =D, (m=1,2,...), (14.41)
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where D,,—; = D and D,,>; can be easily expressed through D but they do not
depend on ¢. (See Problems 14.1-14.3.) There are two properties that we will
refer to in the following section: all moments of P(z,t) are finite, as a result of
the exponential decay of P for  — oo, and the distribution P(z,t) is invariant
under the renormalization

R(a): ' =ax, t' =ad% (14.42)

with arbitrary a, that is, the renormalization group f%(a) is continuous. Evolution
of moments (z™) with time will be called transport. Dependence (14.40) and
(14.41) will be called normal transport.

Another type of the distribution function is the so-called moving Gaussian
packet

= ct)2
P(z,t) = (2nDt)~2 exp |- Z=" 14.
(z,t) = (2nDt) exp [ 5Di (14.43)
with a velocity c. The distribution (14.43) satisfies the equation
OP 08P 1_0°P
= — ==-D— 14.
ot "z "2 o (14.44)

for which the condition (14.23) or (14.31) fails. They can be restored if we
consider the moments ((z — ct)™). It follows from (14.43) that

(x) =ct (14.45)
and
{(z — {z))?) = Dt (14.46)
similarly to (14.40).
14.5 Growth of entropy
Consider the magnitude
S = —(InP(z,t)) = — /00 dxP(z,t)In P(z,t) (14.47)
—o0

known as Boltzmann’s entropy, and calculate its time evolution

_%(]nP(a:,t))z—/_Z “) / i 2B o,
(14.48)

Sp =
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The first term in the right-hand side is zero due to the normalization condition

* . 0P=t) d [~ .
/_oo dz B /_oo dxP(z,t) = 0. (14.49)
The second term in (14.48) can be modified by using (14.27):
® P BP(:I: t)
/_w dlen P(z,t) / dzIn P(z, py { T

e D OP(z,t)

= —~2/_°° dIP(:r,t) [ e ] . (14.50)
From the definition (14.28) D > 0. Since P(z,t) > 0 we conclude

dSp _ d

The magnitude Sp defined in (14.47) is called entropy, and the result (14.51)
represents the so-called H-theorem of Boltzmann applied to the FPK equation
(Note 14.6).

The H-theorem is a specific signature of kinetic equations. We can consider
the existence of the property (14.51) as an indication of a ‘normal form’ of the
kinetic equations. At the equilibrium Sp reaches its maximum and 5'3 =0

The description of dynamic systems with chaotic trajectories needs more
sophisticated types of kinetics for which the divergent form does not exist and /or
the inequality (14.51) may not be valid. All these topics will be discussed in the
forthcoming chapters (see also Problem 14.4).

14.6 Kolmogorov conditions and conflict with dynamics

A perfect mathematical scheme often has constraints which limit its application
to real phenomena. Constraints related to the Kolmogorov conditions (14.25)
are very important for all problems related to the anomalous transport that
will be discussed in the forthcoming chapter. Consider the limit ¢ — 0 and an
infinitesimal displacement dz along a particle trajectory that corresponds to this
limit. Then dz/t — v where v is the particle velocity, and the conditions (14.25)
with the notation (14.28) gives

(6z)°
ot

This means that v should be infinite in the limit 6¢ — 0, which makes no physical
sense.

Another manifestation of the conflict can be obtained directly from the
solution (14.39) to the FPK equation. This solution satisfies the initial condition

= v26t = D = const. (14.52)

P(z,0) = é(z), (14.53)
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that is, a particle is at the origin at ¢ = 0. For any finite time ¢ solution (14.39)
or (14.43) has non-zero probability of the particle to be at any arbitrary distant
point x, which means the same: the existence of infinite velocities to propagate
from z = 0 to £ — oo during an arbitrary small time interval . A formal accept-
ance of this result appeals to the exponentially small input from the propagation
with infinite velocities. A physical approach to the obstacle in using the FPK
equation is to abandon the limit At — 0 in (14.25), to introduce min At, and to
consider a limit

1
— 00
min At

(14.54)

A more serious question is how to use (14.54) and how the FPK equation can
be applied to real dynamics. Let us demonstrate the answer using the standard
map (5.13) as an example.

As was mentioned in Section 5.2, the map (5.13) corresponds to a period-
ically kicked particle dynamics, that is, min At = 1 in dimensionless variables.
For K > 1 one can consider variable  to be random with almost uniform
distribution in the interval (0,27) (Note 14.7). Then

((sinz)) =0, ((sin®z)) =1

Apn =pnt1—Pns ((Apa)) =0, (((Apa)?)) = 5

where double brackets ((---)) means averaging over z, and one can write the
corresponding FPK equation with respect to the slowly varying momentum p:

OP(p,8) _ 1oy 1y PP(0:1)

14.
ot 2 o2 AE0)
with
K2
Equation (14.56) provides the normal transport. Particularly
(p?) = %K%. (14.58)
More sophisticated analysis gives for D(K') an oscillating behaviour
D(K) = K? (% - JQ(K)) (14.59)

with J5(K) as the Bessel function. Due to the presence of the Bessel function,
the diffusion coefficient D(K) oscillates as a function of K. The oscillations
were observed numerically in Chirikov (1979). Their theory is known as the
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Rechester—-White diffusion. It keeps the same equation (14.56), and changes only
D(K). (See Rechester and White (1980); Rechester et al. (1981)). More serious
changes to the diffusional equation will be discussed in Chapter 16. Our main
goal here is to show how the described conflict can be eliminated using truncated
distributions.

14.7 Truncated distributions

A general scheme to perform a simulation of the problem of diffusion and trans-
port for given dynamical equations is to select a set of initial points in phase space
{z0,po,t = 0} and let them move until a large time ¢. Then for different time
instants t;,%2,...,t one can collect points into bins located in phase space and
create a distribution function P(z,p,t;) or its projections P(z,t;), P(p,t;). All
these distributions are always truncated by some values Zmax, and pmax because
velocities of trajectories for all initial conditions are bounded during the finite
time interval (0, ). For a fairly large ¢t we can split, for example, P(p,t) into two
parts:

P(p’ t) = Pcore(pv t) + Ptail(pvt) (14.60)

and calculate the corresponding moments

(P™) = (P™)core + (P™ tail- (14.61)

Let us estimate the second term in (14.61).
Assume that p* is the point of splitting of P(p,t) into the core and tail
parts. Then

o = [ " dp P P(pt) < (pmm)™P(p ). (1462)
b4

-

For the Gaussian distribution P(p*,t) is exponentially small and we can neglect
(p™)tain independently on m. This resolves the paradox with the Kolmogorov
conditions for the solutions of Gaussian type. The situation is different if for
large values of p the distribution function behaves algebraically, that is,

P(p,t) ~ ;(T?, (p— ). (14.63)

All moments (p™) diverge for m > §, — 1 and estimate (14.62) should be
replaced by

(pm)tail = C(t) m—d&p+1

m— 6, + 1 ™ —hO0, (Pmax — 00). (14.64)

Expression (14.64) shows that for the truncated distribution with an algebraic
asymptotics, the time evolution of fairly large moments is defined through the
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largest value of momentum that a particle can obtain during its dynamics. The
result imposes some constraints on how large can m be for the given model with
its 6, and for a selected observation time t. Opposite to the Gaussian case, we
can neglect (p™)core in (14.61).

A similar statement exists for the coordinate distribution function P(z,t) if
its behaviour is algebraic for large x > 0, that is,

P(z,t) ~ —5. (z — 0). (14.65)

This consideration will be important when we consider anomalous transport in
Chapter 16.
The distribution defined as

P(tr)(p»t)a 0 < p < Pmax;

P(p,t) = { 0 G (14.66)

will be called truncated distribution, and the corresponding moments will be
called truncated moments. Any kind of simulations of the direct dynamics deal
only with the truncated distributions and moments.

Finally, we arrive at the following important constraints which are necessary
for a realistic analysis of the dynamics:

ot > 6tmim (-’L‘,P) < (zmampmax) (1467)

which means the infinitesimal time is bounded from below and the phase space
variables are bounded from above. Other consequences of the truncation can be
found in Ivanov et al. (2001).

Notes

Note 1.1

There exist plenty of books and papers that provide excellent presentations of
the origin and improvement of the contemporary kinetic theory: from the
original works of Boltzmann (1872, 1895, 1898); Ehrenfest and Ehrenfest
(1911); Smolukhowski (1915); and Einstein (1905), to more sophisticated
methods in Kac (1958) and Prigogine (1962). (See also the review and other
references in Liboff (1998)). The transition (14.2) is known as the random
phase approzimation, and the transition (14.3) is known as the one-particle
approzimation. For more discussions, see Zaslavsky (1985).

Note 14.2
Using the properties of dynamical equations to derive a kinetic equation was
first performed by Boltzmann (1872, 1895). The theory of chaotic dynamics
was formally involved into kinetic theory by Zaslavsky and Sagdeev (1967)
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(see also in books Zaslavsky (1985); Sagdeev et al. (1988); Dorfman (1999);
and Lichtenberg and Lieberman (1983)).

Note 14.3
For the review of fractional kinetics and the anomalous transport in
Hamiltonian dynamics, see Zaslavsky (2002b).

Note 14.4
For the review of derivation, properties, and applications of the FPK equation,
see Chandrasekhar (1943) and more recently Liboff (1998).

Note 14.5
The way to derive (14.27) is slightly different from what has been used in the
original works of Kolmogorov and Landau, due to the use of expansion (14.19)
over d-function and its derivatives.

Note 14.6
Boltzmann considered the expression

H=(IhP)=-5S<0

which explained the origin of the name of the H-theorem (H in Boltzmann’s
original work should not be confused with the Hamiltonian).

Note 14.7
In fact, in the vicinity of some arbitrary large values of K there are strong
localized deviations from the uniformity. They will be considered in detail
later. These deviations lead to the anomalous transport described by an
equation that significantly differs from the FPK equation.

Problems

More complicated problems are marked by (*).

14.1 Derive the solution (14.39) for (14.27) with D = const, P(z,t = 0) = §(z),
z € (—00,+00).

14.2* Find an expression for the probability P(zo, to = 0; z¢, t) of the first return
to a point x( after time ¢ (see Risken (1989)).

14.3 Find a recurrent formula for the higher moments coefficients D,, in (14.41).
14.4* Consider Sp with the definition of Sp in (14.47), and the distribution

function P(z,t) which satisfies (14.26). Find a condition of the validity of
a monotonic entropy growth.



